
A Loader For Executing Multi-binary Applications on the
Thinking Machines CM-5: It's Not Just Fo-r SPMD Anymore

Jeffrey C. Becker 1

Report NAS-95-007 February 1995

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035-1000

Abstract

The Thinking Machines CM-5 platform was designed to run single program, multiple
data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with
each node possibly operating on different data. Certain classes of applications, such as
multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to
have subsets of the partition nodes running different binaries. In order to extend the CM-5

system software to permit such applications, a multi-program loader was developed. This
system is based on the dld loader which was originally developed for workstations.This

paper provides a high level description of dld, and describes how it was ported to the
CM-5 to provide support for multi-binary applications. Finally it elaborates how the
loader has been used to implement the CM-5 version of MPIRUN, a portable facility for
running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard [5])
codes.

1. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000



1.0 Introduction

One of the goals of the Numerical Aerodynamic Simulation (NAS) facility at

NASA Ames Research Center is to provide a sustained Teraflops computing rate

on Computational Fluid Dynamics (CFD) codes. To this end, NAS has been

evaluating parallel systems such as the Thinking Machines CM-5, as replace-

ments for shared-memory vector computers such as the Cray COO. One class of

CFD programs that is targeted is the so-called multi-disciplinary codes in which

several disciplines are brought together and coordinated to perform a simulation

[1]. For example, one code that is being run with increasing frequency at NAS is

a fluids-structures code in which a fluids code component and a structures code

component interact at each time step to perform a simulation of an aircraft struc-

ture such as a wing.

The CM-5 was primarily intended to run data parallel codes written in CMF or

C*. While the CMMD message passing library can be used to communicate

between nodes that are executing different parts of the same code, this is the limit

to the degree of MIMD programming that is available. The CMost operating sys-

tem and time sharing software running on the CM-5 only provide facilities for

jobs consisting of a single executable on a partition, with each node possibly

operating on different data. Users submit jobs to a partition manager, a Sun

SparcStation 2 front end controlling some multiple of 32 nodes. The operating

system gang schedules all the nodes of a partition to run each job. Different users

can timeshare on a partition, but each user's job is considered as a single (paral-

lel) process by the OS. In fact, the operating system process model is restricted to

this single process view. System calls for process creation are not available as in

standard UNIX. Thus, the system had to be enhanced to provide a means of run-

ning multiple binaries (executables) on the same partition.

Several approaches for developing a multi-binary loader were evaluated:

• Modify CMOST

• Use Linda/Piranha loader as starting point

• Use GNU did loader as starting point

The GNU did loader program originally designed for UNIX workstations was

selected. The did system allows a process to load an executable file into its image

and access functions from the loaded binary. This could be used to provide the

desired functionality on the CM-5 as follows. First, a common loader program is

submitted to run on all the nodes of a partition, using the existing system soft-

ware. This could then load a (possibly) different binary on each node. Thus, did

was acquired and ported to the CM-5.

As a major test of the loader, it was used as a basis for porting the MPIRUN

loader [3] to the CM-5. This system was designed by Sam Fineberg at NAS to

enhance the Message Passing Interface (MPI) standard [5] with a capability for

program loading. MPIRUN has already been ported to several other parallel



computersincluding theIntel ParagonandIBM SP2.However,thesesystemsall
provide someform of programloadingsimilar to the standardUNIX fork and
execprocessspawningfacilities, soporting MPIRUN on thesemachineswas
relativelystraightforward.As mentionedearlier,theCM-5 systemsoftwaredoes
not provide this capability. However, the did basedloaderprovidesa way to
emulateit. It wasrelatively easy(comparedto porting did itself) to implement
MPIRUN on top of thedid loader.

2.0 CM-5 System

The CM-5 at NAS has 128 SPARC processor nodes, with four attached vector

units. Each node has 32 MegaBytes (MB) of local memory, and peak perfor-

mance of 128 MFLOPS. The interconnection network is configured in a fat-tree

topology. The system contains a Scalable Disk Array, a RAID device comprising

48 GB of fast parallel disk storage. Three SparcStation front ends act as partition

managers. Finally, there are three HiPPI interfaces for connecting to other
machines from the CM-5.

The CM-5 runs the CMost operating system, a parallel but limited version of

UNIX. The OS allows each job to run the same binary on all nodes of a single

partition, with each node accessing data stored in its local memory. As men-

tioned above, each job is run as a single process gang-scheduled across the parti-

tion. The OS supports a limited form of timesharing on the nodes, in which a

(potentially different) user's parallel process is gang-scheduled on the partition

in each time slice. Only one user process is allowed on the partition per time

slice. Jobs are submitted through the Distributed Job Manager [6]. Standard

UNIX features not implemented by CMost include system calls for process man-

agement, such as fork and exec, and virtual memory. Message passing is accom-

plished by calling the CMMD communication library. Vector unit access is

provided implicitly in the data parallel languages CMF and C*, or explicitly

through the DPEAC assembly language. There is no way to access the vector
units with standard C or Fortran.

3.0 Extending the CM-5 to Run Multiple Binaries on a Partition

Probably the most direct way to run multi-disciplinary codes on the CM-5 is to

have all nodes in a partition run a code resembling the following:

1. switch (node number)

z case range i: do discipline i

In fact, this basically represents the extent to which the CM-5 can run MIMD

codes, i.e., the multiple instruction streams must come from a single binary. This

is a very inefficient use of memory since all application disciplines will be con-

tained entirely on every node, but only a single discipline will be run by each.

3



Clearly, it would bebetterto haveeachnodeonly load andrun only thebinary
correspondingto its discipline.

TheCM-5 systemsoftwarein its current state is not able to load different bina-

ries on a partition. If this could be accomplished, the CMMD message passing

library could be used to communicate between the different codes. Thus, the first

step was to enumerate the options available to carry out this task. Basically, there
are three possible solutions.

The first solution is to modify the CMost source code. The principal part of the

code requiring modification is the page table management routines. The OS cur-

rently has one page table per job running on each partition. In order to allow each

job to be comprised of several binaries, this would have to be changed to several

page tables per job, one per binary. For example, each job could be associated

with a linked list of page tables. In addition, for each code comprising a job, the

system would have to keep track of the nodes it was running on. Assuming that

each code runs on a contiguous range of nodes, a pair of integers could be associ-

ated with each job. While the additional functionality is not very substantial, it

seemed that modifying CMost is a very difficult task as there are over 6000

source files, and it is not trivial to pinpoint all the necessary changes, and take

care of all possible interactions affected by those changes. In particular, much of

the code depends on the single process model referenced earlier. Thus even a

simple change could have wide effect. In addition, it would be very difficult to
maintain this system.

The second option was mentioned by our on-site TMC support staff [7]. As part

of the Linda project at Yale University, Eric Freeman developed a loader to sup-

port loading multiple binaries on a CM-5 partition [2]. It works as follows. First,

the different binaries are each linked to begin execution at a fixed address. At

run-time, a single bootstrap loader is started up on all nodes of a partition. Each

node receives a message from the partition manager telling it the size of the code

it is to receive. Memory is then allocated in the data segment of the loader using

the valloc system call. Once the space is allocated, the partition manager then

broadcasts each binary to the target subset of nodes. Normally, the CM-5 broad-

casts can only be done to all nodes in a partition. In order to circumvent this, spe-

cial low level calls are made to the network interface of the nodes not receiving
the binary to tell them to abstain from the broadcast. These must be reset

between each subset broadcast, and before the binaries start execution. When all

loading is complete, all nodes jump to the prespecified location.

Although this effectively accomplished the desired goal, two aspects to its imple-

mentation make it unattractive. The first is the implementation's inefficient mem-

ory utilization. The valloc call allocates memory aligned on a page boundary.

Thus any memory between the end of the loader text segment and the next

boundary is wasted. The other shortcoming is the requirement that codes be

linked to start at a fixed address. This is not desirable since each new version of

the loader could require specifying a new address. At the outset of the project,

4



thepossibleuseandevolutionof the loaderwasunclear.Thushavingto change
thestartaddressseveraltimeswasnotpractical.Of course,wecouldhaveuseda
large startingaddressin anticipationof loadertext segment(code)growth,but
this wouldhaveexacerbatedtheproblemof memorywaste.

Thesolutionwhich waseventuallyadoptedandportedto theCM-5 wasfoundin
theGNU softwarerepository.This code,did,wasdevelopedby WilsonHo while
hewasa graduatestudentat the University of California at Davis [4]. It is a
dynamic linker systemdesignedto link one binary into the data segmentof
anotherat run-time.It reads in the text and data of the desired binary, allocating

only as much memory as desired. In addition, this information is read in to mem-

ory immediately following the memory used by the executable being read into.

Unlike the Linda loader described above, no memory is wasted and the entry

point to the loaded binary is not fixed. The code does not have to linked to load at

a particular address. This has the additional advantage that codes do not have to

be relinked prior to use with did. Thus, for example, each component of a multi-

disciplinary application can be developed and tested individually and the result-

ing binaries can be fed directly to the loader. The final reason for selecting did is

that it was already a complete buildable source package, whereas the previous

loader source comprised pieces of code extracted from the Linda system. Thus,

did seemed to provide a better starting point.

4.0 Did

Dld is a library that provides the ability to dynamically link in relocatable object

files or libraries. Although several functions are provided, the salient ones for our
purposes are described below.

int dld_init (char *path)" performs initialization and loads the symbols

of the executing program (located at path) into memory so that they may be

accessed by code to be dynamically linked in. It must be called prior to any other

dld functions. Normally, did_init takes the path of the executable that contains

the call as a parameter.

int dld_link (char *filename) : performs dynamic linking of the object

file or library file stored in the file named filename. All memory required for this
is allocated dynamically within this function.

unsigned long dld_get_func (char *func) " returns a pointer to the
named function, func.

In order to use did for the CM-5 loader, each node would basically do the follow-
ing:



1.

2.

3.

4.

5.

dld_init (loader_path)

for each required library(libc.a, libm.a,

dld link (library)

dld__link(file to be run on this node)

func = dld_get_func (main)

* func ()

etc. ) ,

FIGURE 1. Did loader pseudocode

Thus, the OS is told to run the same binary on all the nodes as usual. However,

after the first step, each node could load a completely different code, and run in

true MIMD fashion. Note that did_link is for relocatable object files. Thus any

libraries not already used by the "parent" binary (into which linking is done)
must be linked in as well.

Did also provides functions to unlink object files or libraries. This can be used to

reclaim space and possibly link in an entirely different binary, thus allowing

codes to dynamically alter their function several times during their execution.

5.0 Porting did to CM-5

Although the version of did obtained from the GNU project built fine and ran the

sample test codes provided with the source correctly on the CM-5 Sparcstation

partition managers, there were several problems that had to be resolved before

did could be run on the CM-5 nodes. This is not surprising, as dld was not origi-

nally designed for parallel machines. Although most of the problems that were

uncovered had to do with this factor, several remaining bugs were also found

(and fixed). Our tests probably uncovered paths in the code that had not been
exercised.

The did code had to be ported to use the CM-5's I/O facilities. There are four I/O

modes provided in the CMMD library. Every file descriptor has one of the fol-

lowing modes associated with it.

CMMD_locah nodes can read and write different files; each node maintains

its own file descriptors and file pointers.

CMMD_independent: files in this mode are opened by all nodes for indepen-

dent reading and writing; a single file descriptor is stored in the process' file
descriptor table.

CMMD_sync_bc: allows simultaneous reading or writing of a file by all

nodes; uses special broadcast hardware and is very fast.

CMMD_sync_seq: allows scatter reads of sequential file data to and gather

writes from nodes; uses special hardware for speed.

In order to achieve good performance and maintain simplicity, the CMMD_syn-

c_bc mode was used for all loading. The prototype loader is first initialized by

6



having all nodesreadin the symbolsof its executable(step 1 above).It then
loadsacommonsetof libraries on all the nodes (step 2). Synchronous broadcasts

are very efficient for these operations.

At step 3, each node loads a potentially different binary. However, it's likely that

each binary is run by a group of nodes, and the number of such groups is not usu-

ally very large. Thus it is efficient to do the file operations in the CMMD_syn-

c_bc mode. The primary drawback to using this mode is that all nodes must

participate. In order to conserve memory, nodes that do not use a given binary

unlink it after loading is complete. Note that this would not be as important if

CMost supported virtual memory since only the necessary pages would be
loaded on each node. A future version of the loader could use the low level calls

as used in the Yale loader to cause nodes to abstain from broadcasts of binary

files intended for different nodes, thus eliminating the need for unlinking.

The unlinking step also unlinks any libraries associated with the binary being

unlinked. Since those same libraries may be needed by the binary that is meant to

be loaded on that node, this may cause an error. To fix this, a function to spe-

cially tag library symbols as preloaded was added to did. The unlink function

was also modified to only unlink symbols that did not have the special preload

tag.

Certain symbols that are normally included by the standard linking process

appeared to be missing. To fix this problem, a dummy source file defining them

was created and compiled to an object file that was loaded at run time.

Step 4 in Figure 1 shows the format of the dld_get_func call for C programs. For

F77 codes, the compiler uses the symbol "MAIN_" to indicate the main pro-

gram. Thus this parameter is given to dld_get_func instead.

The resulting loader only works with codes written in the C and Fortran lan-

guages. The CM-5 data-parallel languages CMF and C* are not currently sup-

ported. As stated earlier, this means that the only access to the vector units is

through the assembly language DPEAC. Several difficult problems would have

to be resolved to support these languages, e.g., getting collective communication

to work correctly within groups of nodes. Thus, this was not attempted in this
initial version of the loader.

6.0 Using the loader for multi-disciplinary application
support: MPIRUN

MPIRUN is a portable facility for running multi-disciplinary/multi-zonal MPI

codes. It was developed at NAS by Sam Fineberg, in order to add the capability

of loading multiple programs to MPI. The MPI standard does not say how to

load processes. The MPIRUN system is described in detail in [3]. It provides an

interface specification that describes variables and functions available to mpirun

7



programs,and an implementationwhich is somewhat independent of the inter-

face. A basic description of the implementation follows.

The MPIRUN implementation is comprised of two parts. The first part parses the

command line or a file specified by the user. This is to determine how many

nodes each executable is to run on. It then configures some data structures to

record this information. Each code comprising the application needs to know

which application group it is in as well as the leaders of the other application

groups so that they can perform inter-group communication. This information is
also recorded in the initialization of MPIRUN.

Following the initialization a routine, start_procs, is called. This routine loads

the appropriate code onto the nodes as specified in the initialization, and then the

codes are started. Each code must call mpirun_init in order to receive the (appli-

cation) group and group leader information. This information is computed and

stored in a file by mpirun. In mpirun_init, node 0 reads this file and sends the

information to the other nodes. Communication groups for set of nodes running a

particular application are also set up in mpiruninit. This function is in a library,
libmpirun.a, that MPIRUN codes must be linked with.

Porting MPIRUN to the CM-5 was a relatively simple process. The only part of

the system that required porting was the start_procs routine. When a job is run on

the CM-5, all the nodes in the partition are used. However, the MPIRUN job may

have requested fewer nodes. Thus one of the first steps in start_procs calls
CMMD_reset_partition_size in order to have the correct number of nodes. This

is required since the current partition is used as MPI_COMM_WORLD, the MPI

variable specifying the pool of all nodes. Unfortunately, the unused partition

nodes are idle while the job runs, and are not available to other jobs. This is due

to a limitation of the gang-scheduling system used by CMost.

Once the partition size is reset, start_procs basically executes the pseudo-code in

Figure 1 on all the active nodes. The parameters of start_procs include a list of

the applications and the nodes on which they are to run. Thus step 3 is repeated

in a loop through all the applications. When this is done, all nodes do step 4 and

then call the main program to start their particular application.

The MPIRUN implementation was built to run using the 7/22/94 version of the

public domain version of MPI from Argonne National Lab and Mississippi State

University. It should be noted that testing of this MPIRUN port was done using

the same test suite used to test MPIRUN on other platforms (with equivalent test

codes for the CM-5). Although none of these comprise a large multi-disciplinary

application, the suite tests the basic components required for their operation.

8



7.0 Summary

Dld provided a viable solution for allowing multi-disciplinary/multi-zonal codes

to be loaded and run on the CM-5. While aspects of the CM-5's I/O and time-

sharing systems made the implementation less efficient than it potentially could

have been, they did not hamper its functionality. Using the loader as a basis for

porting MPIRUN to the CM-5 was also successful. This can largely be attributed

to the fact that MPIRUN was written to be portable. Most of the changes were

localized to a single procedure. Note that this is true for other platforms as well,

not just the CM-5.

The most difficult part of this work had to do with porting did to the CM-5. At

the start of this project, it looked like did basically accomplished the desired

goal, and although it was clear that some porting work would be required, it

seemed that using did would save much code development time. In retrospect, it

may have been easier to write the loader from scratch. It took much time and

effort to understand the did source code, and as was mentioned earlier, it still had

a few bugs left in it. While software reuse is a good general software engineering

principle, one must carefully assess how much effort is involved.

8.0 Acknowledgments

I would like to thank Parkson Wong for all his help in porting did to the CM-5,

and Sam Fineberg for his assistance with MPIRUN. I'd also like to thank Sam

Fineberg and Bill Saphir for their helpful comments on this report.

9



9.0

[1]

References

Barszcz, Eric, Sisira Weeratunga, and Eddy Pramono, "A Model for

Executing Multidisciplinary and Multizonal Programs", Technical

Report RNR-93-009, NASA Ames Research Center, March 1993.

[2] Carriero, Nicholas, Eric Freeman, and David Gelernter "Adaptive

Parallelism on Multiprocessors: Preliminary Experience with Pira-

nha on the CM-5", Technical Report 969, Yale University, May 1993.

[3] Fineberg, S.,"Implcmenting Multidisciplinary and Multizonal Applica-

tions Using MPI", 5th Symposium on the Frontiers of Massively Parallel
Computation, February, 1995.

[4] Ho W.W., and R.A. Olsson, "An approach to genuine dynamic linking",

Software, Practice and Experience, v. 21, no. 4, April 1991.

[5] Message Passing Interface Forum, "MPI: A Message-Passing Inter-
face Standard", May, 1994.

[6] Minnesota Supercomputer Center, "The Distributed Job Manager
Administration Guide", 2nd ed., 1993.

[7] Saphir, W.C., personal communication, August 1993.

[8] Thinking Machines Corporation, "CMMD reference manual", v. 3.0, 1993.

10


